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Abstract
Vocal signals mediate social relationships, and among networks of territorial animals, 
information is often shared via broadcast vocalizations. Anthropogenic noise may 
disrupt communication among individuals within networks, as animals change the 
way they vocalize in noise. Furthermore, constraints on signal transmission, includ-
ing frequency masking and distance, may affect information exchange following a 
disruption in social networks. We tested the hypothesis that signaling interactions 
within networks of breeding male and female house wrens (Troglodytes aedon) de-
pend on distance, ambient noise, and receiver nesting stage. We used playback ex-
periments to simulate territorial intrusions with and without noise playbacks on the 
territories of established males and simultaneously recorded the vocal responses of 
neighbors. To examine whether intrusions impacted interactions between males, we 
used randomization tests to determine whether treatment, distance, noise, or nest-
ing stage affected vocal coordination between challenged and neighboring males. 
We also quantified singing patterns to explore whether intrusions on territories of 
challenged males affected singing by males and females on neighboring territories. 
Males sang at the lowest rates and were less likely to overlap songs with the chal-
lenged male when their partner was laying, compared to males during early and late 
nesting stages. Noise and distance did not affect vocal coordination or male singing 
rates. Fewer females sang during the intruder-only treatment compared to the con-
trol and intrusions with noise. Added noise in the territories of challenged males may 
have masked signals, and as a result, females only changed their behavior during the 
intruder-only treatment. Our results suggest that the fertility of breeding partners 
may be more important to males than short-term changes on rival male territories. 
Elevated noise did little to alter male responses to threats within networks. Females 
appeared to eavesdrop on interactions involving neighboring males, but noise may 
have prevented detection of their interactions.
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1  | INTRODUC TION

Animals give vocalizations structured for long-distance transmission 
to convey information regarding sender identity, quality, and moti-
vation (Bradbury & Vehrencamp, 1998). Vocal signals mediate social 
relationships, linking signal senders and receivers in complex sig-
naling networks (McGregor, 2005; McGregor & Dabelsteen, 1996; 
McGregor & Peake, 2000; Peake, McGregor, & Dabelsteen, 2005). 
Within signaling networks, territorial males actively gain information 
regarding other males through countersinging or passively through 
eavesdropping (McGregor,  2005; Peake et  al.,  2005), adjusting 
their own behavior according to information gained (Amy, Sprau, 
de Goede, & Naguib, 2010; Naguib, Amrhein, & Kunc, 2004; Peake, 
Terry, McGregor, & Dabelsteen, 2002; Schmidt, Amrhein, Kunc, & 
Naguib, 2007). Simultaneously, females eavesdrop on and alter their 
behavior in response to male counter-signaling interactions (Snijders, 
van Oers, & Naguib, 2017), using acquired information to guide mate 
choice decisions (Mennill, Ratcliffe, & Boag, 2002; Otter et al., 1999). 
Thus, variation in male signaling behavior is closely tuned to the spe-
cifics of their social environment. Accordingly, changes in the social 
environment will likely affect patterns of vocal interactions among 
the members of territorial signaling networks.

Constraints on signal transmission that affect the ability of re-
ceivers to detect, discriminate, and decode signals may weaken 
exchanges among individuals. Acoustic signals attenuate over 
space and become further degraded as they are absorbed by veg-
etation or scatter through the environment with increasing dis-
tance from the signaler (Marten & Marler,  1977; Morton,  1975; 
Wiley & Richards, 1978). Additionally, frequency masking by other 
sounds decreases the area over which signals can be detected 
(Klump, 1996), limiting the ability of receivers to hear and perceive 
signals. Human-generated noise pollution adds to these natural 
causes of signal degradation and further limits information sharing 
due to masking (Patricelli & Blickley, 2006). As a result, in noise-pol-
luted areas, vocal interactions among neighboring territorial males 
and females may change. For example, individuals may move closer 
together to increase the likelihood of detecting signals (Owens, Stec, 
& O'Hatnick, 2012). Alternatively, neighbors may not interact at all if 
they miss information as a result of frequency masking, signal atten-
uation, or a combination of both. Therefore, the effects of anthropo-
genic noise masking, compounded by distance, may fundamentally 
alter the structure of social interactions within signaling networks.

In addition to limitations imposed by environmental constraints, 
variation in signaling patterns among callers may be context-depen-
dent (Snijders & Naguib, 2017). Between rival males, vocal coordina-
tion, or the probability of song alternation and overlap may depend 
on social conditions, such as group size and whether or not males 
have paired (Fernandez, Vignal, & Soula,  2017). In response to in-
truders on the territories of neighbors, males respond more strongly 
when intrusions are in close proximity to their own territory (Foote, 
Fitzsimmons, Mennill, & Ratcliffe,  2011) or reflect a greater risk 
(Fitzsimmons, Foote, Ratcliffe, & Mennill, 2008). Female responses 
to male signaling interactions may also vary by context, as social 

interactions linked to reproductive success will vary across stages 
of breeding. Females may adjust their spatial behavior (Snijders 
et  al.,  2017) to facilitate eavesdropping for future mate decisions 
(Mennill et al., 2002; Otter et al., 1999) or may synchronize interac-
tions at the nest with their social mate, as intruders on neighboring 
territories may pose a risk to reproductive investment. Therefore, 
measuring patterns of signaling interactions among multiple male 
and female callers may reveal otherwise hidden interactions be-
tween individuals within networks. By investigating context-depen-
dent signaling in conjunction with measurement of anthropogenic 
noise, we can gain a better understanding of the primary drivers 
of social interactions among individuals (McGregor & Horn,  2015; 
Snijders & Naguib, 2017).

We tested the hypothesis that environmental constraints and 
social context affect patterns of singing among territorial male and 
female house wrens (Troglodytes aedon) within signaling networks. 
To test our hypothesis, we used playbacks to simulate territorial 
intrusions with and without anthropogenic noise on territories of 
established males (hereafter, “challenged males”), but focused on 
the vocal behavior of neighbors to explore whether environmental 
factors (noise and distance from challenged male) and social context 
(nesting stage) influenced singing. We measured vocal coordination, 
or patterns of signal overlap and alternation between challenged 
and neighboring males (Araya-Salas, Wojczulanis-Jakubas, Phillips, 
Mennill, & Wright,  2017; Fernandez et  al.,  2017; Masco, Allesina, 
Mennill, & Pruett-Jones, 2016), and total song output by neighbors 
in response to simulated intruders to understand factors that influ-
ence the vocal responses of neighbors. As the responses of neigh-
boring males and females to challenged males may differ (Snijders 
et al., 2017), we evaluated female vocal responses by determining 
whether neighboring females sang during treatments. Our objective 
was to assess the change in song output and patterns of signaling 
interactions in response to simulated territorial intrusions, not in-
formation contained within the challenged males' signal itself (e.g., 
aggressive intent or male quality). We predicted that, if challenges 
are detected by neighbors, both male and female neighbors would 
change their singing behavior, by either signaling more to affirm ter-
ritory ownership and partnership, or less to facilitate eavesdropping. 
However, anthropogenic noise masking and distance-related signal 
attenuation could decrease the probability of detection, resulting in 
less coordinated interactions between challenged males and their 
neighbors in noisier networks or between challenged males and 
more distant neighbors.

Both male and female house wrens sing throughout the breed-
ing season (Krieg & Getty,  2016; Rendall & Kaluthota,  2013), 
but total song output varies across nesting (Grabarczyk, Pipkin, 
Vonhof, & Gill,  2018; Johnson & Kermott,  1990, 1991; Rendall & 
Kaluthota,  2013; Tove,  1988). Paired and unpaired males prior 
to clutch initiation sing long songs at high rates (Grabarczyk 
et al., 2018; Johnson & Kermott, 1991; Rendall & Kaluthota, 2013), 
whereas laying-stage males almost cease singing entirely (Johnson 
& Kermott, 1991). After egg-laying, singing behavior is variable, but 
generally males sing more during incubation and nestling stages 
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(Johnson & Kermott, 1991; Rendall & Kaluthota, 2013). At any stage, 
high levels of noise masking significantly decrease the distance over 
which male long-distance songs transmit, such that signals may not be 
detected beyond the boundary of a male's own territory (Grabarczyk 
& Gill, 2019b, 2020).Females produce a variety of signal types, but 
overall sing at lower rates than males (Johnson & Kermott, 1990). 
Female wrens sing to coordinate with breeding partners during 
early stages of breeding, including occasionally during incubation 
(Johnson & Kermott, 1990), and give high-frequency, low-amplitude 
signals in response to territorial intruders of both sexes (Krieg & 
Burnett, 2017; Krieg & Getty, 2016). Consequently, noise pollution 
on territories may affect both within-pair and among-neighbor sig-
naling interactions.

2  | METHODS

2.1 | House wren signaling networks

From 2016 to 2017, we monitored a color-banded population of 
house wrens at three sites in Kalamazoo County, Michigan, USA 
(Supporting Information). We used mist nets to capture house wrens 
at their nest boxes and fitted each adult with three color bands and 
one numbered aluminum band to discriminate between individuals. 
We sexed adults in hand based on cloacal protuberance (male) and 
brood patch (female) and confirmed sex and territory ownership by 
observing sex-specific male and female songs at the nest box. Prior 
to house wren arrival on the breeding grounds, we arranged nest 
boxes (N = 96) into 16 networks, each containing six nest boxes in 
areas of open habitat near a forest edge. Within networks, boxes 
were arranged into hexagons, placing adjacent boxes at a 60° angle 
and separating them by 45–50 m. Networks were separated by at 
least 150 m to minimize detection of long-distance male songs be-
tween networks (Grabarczyk & Gill, 2019b). Networks varied in spa-
tial proximity to anthropogenic noise sources such as local roads and 
highways (Grabarczyk & Gill, 2019b, 2020) and therefore differed in 
ambient noise levels (Supporting Information).

2.2 | Playback experiment

We ran playback experiments between June 6–July 21, 2016, and 
April 28–July 2, 2017, on 18 challenged male territories (n = 7 ter-
ritories in 2016 and n = 11 territories in 2017), while simultaneously 
recording all house wrens breeding in each network (n = 43 neigh-
boring males and n  =  33 neighboring females). Challenged males 
were tested either prior to clutch initiation or during incubation. 
Each network was tested only once per year; five networks tested 
in 2016 were tested again in 2017. Three color-banded males were 
tested and included in analysis for both years. In total, 37 out of 43 
males (86%) and 18 out of 33 females (55%) were color-banded.

In networks occupied by two or more males, we placed Wildlife 
Acoustics Song Meter 2 units (SM2; Maynard, MA, 44.1 kHz sample 

rate, 16-bit, .wav format) at each active nest box. House wrens were 
recorded at their nest boxes by attaching a microphone (Wildlife 
Acoustics, SMX-II model) to the nest box pole and connecting 
the microphone to an SM2 unit with a 3, 10, or 50  m cord (some 
units recorded two nest boxes on separate channels; Supporting 
Information). Units were pre-programmed to begin recording 1  hr 
before to 4  hr after sunrise (Eastern Standard Time, EST) in 30-
min recording increments. Playbacks took place between sunrise 
and 1100 (EST) on days with minimal wind speed and no precipita-
tion and followed the same procedure used by Grabarczyk and Gill 
(2019a). Briefly, we created 28 playbacks from recordings of male 
house wrens breeding in southwest Michigan during 2015–2016. 
Males sing with eventual variety, repeating the same terminal sec-
tion several times before gradually transitioning to a new song type 
(Kroodsma, 1977; Rendall & Kaluthota, 2013). Therefore, to mimic 
natural singing patterns, a single song type was repeated every 
15  s for 10  min, similar to typical rates of singing (Grabarczyk & 
Gill, 2019a). From the collection of 28 exemplars used in Grabarczyk 
& Gill,  2019a, 16 were randomly selected for use in the present 
study (two playbacks were used twice, one in 2016 and one in 2017). 
For noise playbacks, we created a pink noise signal in Avisoft SASLab 
Pro v5.2 (R. Specht, Glienicke/Nordbahn, Germany). Pink noise is a 
continuous noise signal, comparable to white noise, except that it 
has more energy concentrated at low frequencies (0–2 kHz), simi-
lar to anthropogenic noise (44.1 kHz sample frequency, lowpass 1/f, 
frequency cut off at 0.20 Hz).

Each challenged male received three treatments: intruder play-
back only, intruder plus noise, and noise only. We randomly selected 
the order of treatments. Each stimulus consisted a 10-min control 
period, a 10-min playback, followed by a 20-min break before start 
the next playback. To simulate a territorial intruder, an amplified 
SME-AFS speaker (Saul Mineroff Electronics) was placed 5–10  m 
from the challenged male's nest box. We broadcast noise from 
a second speaker that was placed 10  m in the opposite direction. 
Both pink noise and simulated intruder playback were broadcast 
at 76 dBA measured with a SPL meter at 1 m, fast averaging mode 
(American Recorder Technology SPL-8810; Supporting Information). 
We selected 76 dBA for playbacks because paired male house wrens 
sing at this amplitude (Grabarczyk & Gill, 2019b) and noise playbacks 
broadcast >80 dBA completely mask the songs of males singing 
nearby, preventing analysis of song traits (Grabarczyk et al., 2018).

2.3 | Acoustic analysis

Because network recordings during trials were made on two to six 
SM2 units with time manually set, we needed to account for the 
relative time difference between units before extracting the tim-
ing of male songs relative to one another. Therefore, after playback 
experiments, units were synchronized by setting all units side-by-
side, programming them to start at the same time and recording 
for 5  min during which we played pre-recorded house wren song 
through an iPhone. From recordings, we determined the time offset 
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between units and aligned the recordings such that start of playback 
experiments occurred within 0.01 ms across recorders. In Avisoft, 
we inserted point labels indicating the start and end of each 10-min 
experimental period on all recordings (i.e., before, during, and after 
each of the three treatments). We defined the control as the first 
10-min period of the trial, prior to any treatments.

Male house wren song consists of two parts, a low-amplitude in-
troduction section that is structured for short-distance transmission, 
followed by the high-amplitude terminal section capable of trans-
mitting beyond the typical boundaries of a male's territory under 
low-noise conditions (Figure 1, Video S1; Grabarczyk & Gill, 2019a). 
On recordings, we used Avisoft to mark the terminal section of all 
songs recorded for each male with section labels on the spectrogram 
window (Flat top window, 512 FFT length, 93.75% overlap, 0.725 ms 
time resolution). All recordings were processed by E. Grabarczyk. 
To ensure that songs were assigned to the correct male, we gener-
ated spectrograms of all simultaneous recordings (i.e., trials) within 
networks and confirmed that each song was credited to one male 
(i.e., had the highest SNR in the spectrogram and followed typical 
male eventual variety singing patterns). In addition to the terminal 
section of male songs, we labeled all female-specific songs during 
each treatment and the control. This excluded chatter vocalizations 
that are uttered by both sexes. Across treatments and the control 
period, we included 4,076 songs from 43 males and 384 songs from 
34 females in our analysis (male x ± SD: 23.2 ± 21.9, range: 0–98 
songs per treatment; female x ± SD: 2.8 ± 6.2, range: 0–40 songs 
per treatment).

2.4 | Male–male vocal coordination

To explore vocal coordination between challenged males and each 
of their neighbors, we approximated the probability of song overlap 
and alternation between pairs of males. From Avisoft, we exported 
section label metadata, including the start and end time of each male 
song for calculation of coordination estimates. We used the coor.
test function in warbleR (Araya-Salas & Smith-Vidaurre, 2017) in R 
program software v.3.3.3 (R Core Development Team). This function 
uses Monte Carlo randomization tests to determine whether males 
overlap or alternate songs more than what is expected by chance. 
The function estimates a coordination score, in which negative 
values indicate that males alternate their songs, whereas positive 

values suggest overlap (Araya-Salas & Smith-Vidaurre, 2017). Pairs 
of males breeding in the same network were included in analysis if 
males each sang more than 20 songs during each 10-min treatment 
(n = 35 neighboring males included in coordinated singing analysis). 
Males prior to clutch initiation typically sing 3.4 ± 2.0 songs per min-
ute (Grabarczyk & Gill, 2019a). Therefore, we reasoned that if males 
sang less than two songs per min, we could not be sure whether they 
were countersinging with focal males, eavesdropping on them, or 
simply not present on their territories during treatments.

2.5 | Quantifying environmental factors

Noise varies over space and time; therefore, males breeding in the 
same network may experience different levels of noise on their 
territories at any given moment (Gill, Job, Myers, Naghshineh, & 
Vonhof, 2015; Gill, Grabarczyk, Baker, Naghshineh, & Vonhof, 2017). 
We assessed the influence of noise on signaling interactions and 
assumed that noise levels on territories of neighbors contribute to 
variation in their singing behavior. We quantified from recordings 
full spectrum sound pressure levels (rms, dB) on each neighbor's ter-
ritory during treatment and control periods. We used a Larson Davis 
CAL 200 sound level calibrator to calibrate SM2 unit and microphone 
pairs by recording a 1-kHz 94 dB tone. Using the Calibration function 
in Avisoft, we set the recording amplitude to 0 dB (re 20 μPa) based 
on the recorded calibration tone. To determine average ambient 
noise levels, we randomly selected five 1-s samples from each 10-
min experimental period and the control. We used the automated 
parameter tool in Avisoft to extract amplitudes (rms, dB) for each 
1-s noise sample and calculated a log-average for each treatment 
and the control. To account for signal attenuation due to distance, 
we measured the distance between neighbors and challenged male 
nest boxes. We used a Garmin handheld unit (GPSmap 60CSx) to 
generate GPS locations and measured the distance between chal-
lenged and neighboring male territories with ArcGIS 10.5 software 
(distance tool; ESRI Redlands).

2.6 | Nesting stage

Nest boxes were checked every three days and from this record, we 
defined social context as nesting stage, during which house wrens 

F I G U R E  1   Spectrogram image of male 
and female house wren songs. Male house 
wrens (blue) sing frequency modulated, 
high-amplitude songs that transmit 
beyond a male's own territory under quiet 
conditions. Female house wrens (green) 
produce a variety of songs that tend to be 
low amplitude and span a broad range of 
frequencies
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vary predictably in singing behavior. We grouped stages into three 
main categories (early, laying, and late stages). Early stage included 
unpaired males as well as paired males and females prior to clutch in-
itiation. Pairs were considered laying if the female breeding partner 
had laid an egg on the day of recording. Neighbors were considered 
late stage if the female was incubating a clutch or if the pair were 
provisioning nestlings inside the nest box. In total, 29 neighboring 
house wrens were tested during early nesting stages (n = 19 males 
and 10 females), 18 during laying stages (n = 9 males and nine fe-
males), and 30 during late nesting stages (n = 15 males and 15 fe-
males). Of the 18 challenged males, nine were tested prior to clutch 
initiation (early nesting) and nine were tested during incubation (late 
nesting).

2.7 | Statistical analysis

2.7.1 | Do neighboring males adjust their singing 
behavior?

We used general linear mixed effect models to test the a priori hy-
pothesis that neighbor responses (singing rate [songs/min] and vocal 
coordination scores, respectively) are affected by treatment, the en-
vironment, and nesting stage. We tested whether an interaction term 
between environmental factors (distance by noise) or an interaction 
between nesting stage and treatment improved model fit using the 
Akaike information criteria corrected for small sample sizes (AICc) 
values and found that the interaction terms did not significantly im-
prove fit for either model (Burnham & Anderson, 2004; Supporting 
Information). Therefore, we included treatment (four levels; three 
treatments plus the control), environmental factors (distance from 
challenged male [m] and ambient noise levels [rms, dB]), and nesting 
stage (three levels; early, laying, and late) as fixed effects, and male 
identity nested within network as a random effect. We centered and 
scaled continuous predictor variables (distance and noise) prior to 
analysis. We used the R package lme4 (Bates, Maechler, Bolker, & 
Walker, 2015) for model testing and report fixed effect coefficients 
as well as a bootstrapped 95% confidence intervals (N = 2,000 simu-
lations). We assessed model adequacy with residual plots and used a 

square root transformation on coordination scores as residual plots 
indicated heteroscedasticity (Zuur, Ieno, & Elphick, 2010). We used 
box plots to confirm that presentation of consecutive treatments did 
not result in a carryover effect. We plotted model residuals against 
date and year, but found no patterns, therefore did not include either 
in our model.

2.7.2 | Vocal responses of neighboring females

Initial data exploration of female responses showed that neighboring 
females sang during 48% of the 10-min treatment and control peri-
ods (71 out of 136 trials). Females typically sing at a low rate and the 
data showed over-dispersion. Therefore, we used generalized linear 
mixed effects models (family = binomial, link = logit) to test whether 
treatment, the environment, or nesting stage predict whether or not 
a female sang. We included treatment (four levels), distance to chal-
lenged male (m), ambient noise levels (rms, dB), and nesting stage 
(three levels) as fixed effects and female identity nested within net-
work as a random effect. We centered and scaled continuous pre-
dictor variables (distance and noise) prior to testing. We explored 
whether adding an interaction between environment variables (dis-
tance by noise) or between nesting stage and treatment improved 
model fit, but found that it did not (Supporting Information). Box 
plots confirmed that presentation of consecutive treatments did not 
result in a carryover effect. We plotted model residuals against date 
and year, but found no patterns, therefore did not include either in 
our model. We report fixed effect test coefficients and 95% boot-
strapped confidence intervals.

3  | RESULTS

3.1 | Nesting stage, not noise, predicts signaling 
behavior by neighboring males

During experiments, challenged males (n = 18) sang between 0 and 
123 songs per treatment, whereas neighboring males (n = 43) sang 
between 0 and 98 songs per treatment. Variation in singing rate of 

F I G U R E  2   Male house wrens sang 
at lower rates (a) and were less likely to 
overlap songs with challenged males (b) if 
their breeding partner was laying on the 
day of recording. Violin plots show mean 
responses (white circle) and the width of 
the plot indicates the distribution of male 
responses
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neighboring males and vocal coordination between neighboring and 
challenged males were predicted by nesting stage. Males that were 
recorded on a day in which their social mate was laying sang at lower 
rates (Figure 2a; Table 1) and were more likely to alternate songs or 
show no patterns of coordination with challenged males (Figure 2b; 
Table 1). Males recorded during early and late nesting stages sang at 
higher rates, but showed no predictable patterns of overlap or alter-
nation with challenged males, which indicates no evidence for local 
coordination at these stages (Figure 2b). Male responses were not 
predicted by distance to challenged male, ambient noise levels on 
their territories, or playback treatment, regardless of nesting stage 
(Table 1).

3.2 | Fewer females sang during intruder-
only treatments

A smaller proportion of neighboring females sang during the in-
truder-only treatment than during the control, noise-only, and 
intruder plus noise treatments (Figure 3, Table 1). Noise levels, dis-
tance to challenged male, and nesting stage did not predict the pro-
portion of females that sang during treatments (Table 1).

4  | DISCUSSION

We tested whether distance, anthropogenic noise, or nesting stage 
affected the vocal behavior of male and female house wrens in 
response to a simulated intruder on their neighbor's territory. For 
males, neither the distance to challenged males, ambient noise lev-
els, nor treatment affected patterns of singing. Instead, the vocal 
behavior of males was predicted by nesting stage; males recorded 
on a day that their partner was laying sang at lower rates and were 
less likely to overlap songs with the challenged male. During early 
and late stages of breeding, males sang at high rates and showed no 

predictable patterns of alternation or overlap with challenged males. 
Fewer females sang during the intruder-only treatment compared 
to control, noise-only, and intruder with noise treatments. Females 
may have been more likely to sing during the latter treatments if 
added noise in the territories of challenged males masked reception 
of signals. Our results suggest that singing patterns of neighboring 
male house wrens are synchronized with the fertility of their breed-
ing partner, whereas females were less likely to sing when territorial 
challenges occurred within networks.

Between territories, reception of vocal signals by neigh-
bors may be limited by distance and further constrained by noise 
masking (LaZerte, Slabbekoorn, & Otter,  2017; Pohl, Leadbeater, 
Slabbekoorn, Klump, & Langemann,  2012; Pohl, Slabbekoorn, 
Klump, & Langemann,  2009). The effects of noise masking will 
likely be greatest near the sound source, thus noise in close prox-
imity to signalers may further limit detection and discrimination of 
acoustic signals by territorial neighbors within signaling networks. 
Indeed, noise appears to mask intrusions on challenged male terri-
tories and thereby affect detection by neighbors, as fewer female 
house wrens sang during the intruder-only treatment. By contrast, 
during the intruder treatment with added noise, females may not 
have altered their responses if they were unable to detect the songs 
of the challenged male. In response to noise, territorial males may 
reduce masking and increase the active space of their signals by ad-
justing signal amplitude or the frequency of songs (Halfwerk, Lohr, 
& Slabbekoorn, 2018). Such adjustments may only have a small im-
pact on transmission distances (Nemeth & Brumm, 2010; Parris & 
McCarthy, 2013) and, as a result, may not improve signal detectabil-
ity outside of their own territory. Therefore, in habitats that expe-
rience high levels of noise, the ability to detect and discriminate the 
signals of neighbors may decrease, resulting in social networks that 
are less connected by acoustic signaling interactions.

Vocal signals may convey similar information to both male and 
female conspecifics, but depending on the context, selection might 
favor sex-specific responses (Bradbury & Vehrencamp,  1998). 

TA B L E  1   Fixed effect coefficients and bootstrapped 95% confidence intervals from general and generalized linear mixed effects models 
testing the vocal responses of male and female house wrens to simulated territorial intrusions on their neighbor's territory

Male song ratea  Vocal coordinationa  Females that singb 

Est
Lower 
95% CI

Upper 
95% Est

Lower 
95% CI

Upper 
95% CI Est

Lower 
95% CI

Upper 
95% CI

Intercept 3.18 2.21 4.15 1.35 1.25 1.46 0.50 −0.94 2.07

Treatment: noise-only 0.29 −0.28 0.86 0.03 −0.10 0.16 −0.28 −1.56 0.97

Treatment: intruder + noise 0.18 −0.39 0.76 0.10 −0.08 0.16 −0.30 −1.63 0.83

Treatment: intruder-only 0.50 −0.07 1.11 0.03 −0.03 0.23 −1.22 −2.75 −0.15

Distance (m) 0.30 −0.15 0.72 −0.02 −0.06 0.03 0.46 −0.14 1.14

Ambient SPLs (dB) −0.07 −0.41 0.28 −0.003 −0.05 0.04 −0.25 −0.93 0.30

Stage: Late −1.42 −2.54 −0.33 0.002 −0.09 0.10 −0.04 −1.67 1.52

Stage: Laying −2.77 −4.23, −1.33 −0.16 −0.30 −0.01 −0.16 −2.11 1.75

aGeneral linear mixed effects models testing whether male singing rate (songs/min) or vocal coordination scores. 
bGeneralized linear mixed effect model (family = binomial, link = logit) testing whether females sang (yes = 1, no = 0) during treatments and the 
control. 



     |  7GRABARCZYK et al.

Female house wrens that ceased singing during intruder-only treat-
ments may have been eavesdropping on the challenged male's re-
sponse to the simulated intruder to guide either future reproductive 
or defense decisions. In a population of radio-tagged great tits (Parus 
major), neighboring females were attracted to interactions between 
simulated intruders and challenged males, moving closer to neigh-
bors that responded aggressively, whereas males were repelled, 
moving farther away (Snijders et  al.,  2017). Female rock sparrows 
(Petronia petronia) responded to simulated courtship interactions on 
neighboring territories by spending more time at their nest box, but 
males did not change their behavior (Dabelsteen, Peake, Matessi, 
& McGregor,  2007). Females may perceive interactions between 
a neighboring male and fertile female as a threat to her own nest 
site and reproductive investment (Dabelsteen et al., 2007). In house 
wrens, intraspecific competition among males and females for mates 
and nest sites is common (Belles-Isles & Picman,  1986; Krieg & 
Getty, 2020). Following a successful territorial takeover, new males 
often destroy the eggs of the previous territory holder (Johnson & 
Kermott, 1989). Fewer females sang during intrusions, and while we 
did not observe them during these times, it is possible the females 
may have detected the interaction, ceased singing, and moved closer 
to their nest boxes to protect their reproductive investment.

Many male songbirds sing at high rates prior to mating, but 
adjust patterns of singing once they have attracted a breed-
ing partner (Bradbury & Vehrencamp,  1998), giving fewer songs 
(Catchpole,  1973; Liu & Kroodsma,  2007) at lower amplitudes 
(Johnson & Kermott, 1991; Reichard, Rice, Schultz, & Schrock, 2013; 
Ritchison, 1995). In some species, males specifically adjust the struc-
ture and timing of songs according to the fertility of their breed-
ing partner (Ballentine, Badyaev, & Hill, 2003; Bruni & Foote, 2014; 
Mace, 1987; Zhang, Celis-Murillo, & Ward, 2016). Male house wrens 

with laying females sang fewer songs during experiments and were 
less likely to overlap or alternate songs with the challenged male. 
This pattern suggests that the fertility of female breeding partners, 
or mate guarding, may be more important to males than noise or 
intruders on neighboring territories. Behavioral adjustments that co-
incide the fertility of females may increase male fitness (Araya-Ajoy, 
Dingemanse, & Kempenaers, 2016), but whether males increase or 
decrease song rate, bout duration, or the structure of songs may be 
species specific (Gil, Graves, & Slater, 1999).

Evidence of vocal coordination among groups of birds is limited 
to species in which inter-individual spacing is small and all individu-
als have been recorded at the same stage of breeding. Lekking male 
long-billed hermits (Phaethornis longirostris) alternate songs during 
bouts of coordinated singing with other males that are advertising 
in close proximity, but the probability of overlap increases with in-
creasing distance between males (Araya-Salas et al., 2017). Despite 
patterns of alternation, not all song bouts between pairs of hermits 
were coordinated; males actively adjusted the timing of songs during 
less than 50% of recorded bouts (Araya-Salas et  al.,  2017). Social 
factors may also play a key role in patterns of vocal coordination. 
Captive non-breeding zebra finches (Taeniopygia guttata) coordi-
nated bouts of singing depending on group size and pairing status 
(Fernandez et al., 2017). In wild populations of birds, vocal coordi-
nation may only occur during early stages of breeding. For example, 
males may attend to the temporal singing patterns of other males 
and adjust their own singing patterns while they are advertising for 
mates. But additional energy expenditure to maintain coordinated 
song patterns with neighbors may not benefit males once paired. 
Moreover, the temporal window that we considered in this study 
(blocks of 10-min periods of singing) may be too short to detect 
vocal coordination, as evidence of coordination patterns have been 
found among groups of birds recorded over several hours and days 
(Araya-Salas et  al.,  2017; Fernandez et  al.,  2017; Taff, Patricelli, & 
Freeman-Gallant, 2014).

Although neighbor males during early and late nesting stages did 
not adjust the timing of their songs in response to treatments, they 
may instead alter their movements and use of their territories during 
intrusions on neighboring territories (Amy et  al.,  2010; Naguib 
et al., 2004; Snijders et al., 2017) or may adjust the composition or 
structure of their songs (Naguib, 2005). Depending on the strength 
of focal male responses, neighboring males may move away from 
shared territory boundary, avoiding costly physical interactions with 
a male that has recently protected his territory. Neighboring male 
great tits respond to intrusions on focal male territories by moving 
away from the simulated intrusion, and stronger responses from 
focal males resulted in stronger repulsion behaviors by neighbors 
(Snijders et al., 2017). Spatial responses may also depend on person-
ality type, as male great tits with high exploration scores respond 
more quickly to simulated intruders, and the responses of neighbors 
depends on the personality type of the territorial male experienc-
ing an intrusion (Amy et  al.,  2010). Alternatively, males with com-
plex repertoires, such as house wrens, may alter the type of song 
or the frequency of song sung, matching that of a rival male. Such 

F I G U R E  3   Fewer females sang during the intruder-only 
treatment compared to the control, noise-only, and intruder plus 
noise treatments. Bar height shows the proportion of females that 
sang during each treatment (n = 34) and values inside each bar 
indicate the number of females that sang during experiments
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responses may be regarded as aggressive (Searcy & Beecher, 2009) 
and may enable females to cross evaluate males signaling within net-
works (Logue & Forstmeier, 2008).

Anthropogenic noise masks long-distance vocal signals that birds 
use for mate attraction and territory defense. Abundant evidence 
exists that males adjust their signaling behavior in response to noise 
(Brumm & Zollinger, 2013), yet much less is known regarding percep-
tion of signals in noise and whether masking affects singing behavior 
of among groups of territorial callers. In this study, we considered 
both environmental and social conditions and found that added 
noise in the territories of challenged males affected the responses of 
female, but not male, neighbors. Fewer females sang during intrud-
er-only treatments, suggesting that noise in the territories of chal-
lenged males may limit reception of signals. In contrast, nesting stage 
predicted singing patterns in males. Males did not immediately alter 
singing in response to intrusions on neighboring territories, but they 
may act later, adjusting their behavior instead in the days following 
an intrusion (Foote et  al.,  2011; Schmidt et  al.,  2007). Thus, envi-
ronmental constraints on signal detection may affect male neighbor 
responses, but changes may only be detected over longer periods of 
time. Alternatively, males may be more in tune to within-pair inter-
actions, adjusting their signaling behavior in accordance with their 
mate's breeding stage, rather than in response to changes in sing-
ing of established neighbors. Ultimately, monitoring both short and 
long-term interactions among male and female neighbors by mea-
suring spatial and vocal behavior is important to fully understand the 
effects of anthropogenic noise pollution on signaling interactions in 
a social context.
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