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Introduction

Many important problems in ecology, evolution and

behaviour cannot readily be addressed using experimen-

tal approaches. Thus, whilst the fully randomized experi-

ment is, for many, the ideal approach for hypothesis

testing, alternative methods frequently have to be

adopted (Maynard Smith, 1978; Harvey et al., 1983). To

address questions about long-term processes, observa-

tional and comparative approaches have been developed

and are frequently employed (Maynard Smith, 1978;

Felsenstein, 1988; Harvey & Pagel, 1991).

The comparative approach is used to test evolutionary

hypotheses on datasets collected across multiple species.

Trait or ecological data are collected for a group of

species, and then statistical analysis is used to seek

patterns consistent with alternative hypotheses (Clutton-

Brock & Harvey, 1984; Harvey & Pagel, 1991; Harvey &

Purvis, 1991). This is potentially an extremely powerful

approach as the data collected usually span groups that

encompass long periods of evolutionary change in a wide

range of environmental conditions. The patterns exam-

ined in comparative analysis thus encompass very broad

evolutionary processes. Comparative analyses allow

macroevolutionary patterns to be explored, looking at

the broad outcome of evolutionary processes across

species to be examined (e.g. Harvey et al., 1996). This

contrasts with experimental approaches that focus

typically on within-species microevolutionary processes.

As has been well discussed in the literature, compar-

ative analyses have to deal with issues of phylogenetic

nonindependence (Clutton-Brock & Harvey, 1984; Fel-

senstein, 1985; Harvey & Pagel, 1991; Garland et al.,

1992). That is, within a multi-species dataset species are

related to each other to differing degrees and the degree

of relatedness between species is often reflected in the

amount of trait similarity. This happens because closely

related species share more evolutionary history and

have had less time to diverge than more distantly related

ones.

The basis for many, if not most, comparative analyses is

the analysis of associations between traits using correla-

tion or regression. In this type of analysis if phylogenetic

nonindependence is not accounted for then statistical

analyses may be compromised (e.g. Harvey & Pagel,

1991; Martins & Garland, 1991) and results could be

misleading. The consequences of ignoring nonindepen-

dence are numerous. For example, in simple bivariate

analyses the type I error rate of significance tests will be

inflated (Martins & Garland, 1991) as the variances of the

traits will be incorrectly estimated. Similarly in analyses

of trait differences between groups that differ in discrete

characters, the effective sample sizes will be incorrect

(the ‘radiation principle’ of Grafen, 1989). Alternatively,

without accounting for evolutionary history differences

in evolutionary trajectories between groups cannot be

accounted for and will confound analyses: for example,

Garland et al. (1999) and McKechnie et al. (2006) show
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Abstract

Phylogenetic comparative methods are extremely commonly used in evolu-

tionary biology. In this paper, I highlight some of the problems that are

frequently encountered in comparative analyses and review how they can be

fixed. In broad terms, the problems boil down to a lack of appreciation of the

underlying assumptions of comparative methods, as well as problems with

implementing methods in a manner akin to more familiar statistical

approaches. I highlight that the advent of more flexible computing environ-

ments should improve matters and allow researchers greater scope to explore

methods and data.

doi:10.1111/j.1420-9101.2009.01757.x



that the slope of the relationship between basal metabolic

rate and body size in birds is incorrect unless the split

between passerines and nonpasserines is controlled for.

The bottom line is that it is dangerous to ignore

phylogenetic structure in data and in the same way that

it is risky to ignore autocorrelation in time series or

spatial data. As noted below, diagnosing the extent to

which phylogeny is important is actually relatively

straightforward.

A suite of comparative tests have been developed to

deal with issues of nonindependence, and of these the

most commonly employed are the method of indepen-

dent contrasts (Felsenstein, 1985) and the method of

generalized least squares (GLS) (Martins & Hansesn,

1997; Pagel, 1997, 1999; Garland et al., 1999). Although

formulated in different ways, these two approaches are

essentially the same (see below) and take an underlying

Brownian model of trait evolution to model the expected

variance and co-variance of traits amongst species (e.g.

Felsenstein, 1985; Pagel, 1997, 1999).

Because these statistical methods make assumptions

about the underlying model of trait evolution, these

translate into assumptions and predictions about the way

that data should be distributed across species. If these do

not hold then the tests may be compromised in some

way. Accordingly a series of diagnostics designed for

interpreting the results of phylogenetic analysis have

been developed (Garland et al., 1992; Purvis & Rambaut,

1995; Freckleton, 2000). In addition to the assumptions

about the evolutionary process, more familiar assump-

tions such as homscedasticity and the distribution of

residuals also apply.

Recently, there has been an increasing realization that

the way that statistics is practiced in ecology and

evolutionary biology may need to be thought. Some

key issues to have emerged include looking at effect sizes

rather than relying on P-value (Hilborn & Mangel, 1997;

Burnham & Anderson, 2002; Paradis, 2005); allowing for

model uncertainty and not simply relying on parameter

uncertainty for testing models (e.g. Burnham & Ander-

son, 2002); and including multiple forms of uncertainty

into models (e.g. Clark, 2007).

Unfortunately in some respects, the application of

comparative methods has failed to keep up with these

developments. This is particularly true of analyses that

use comparative analyses to measure simple correlations

and associations between traits using phylogenetic coun-

terparts to conventional nonphylogenetic statistical

methods. In this paper, I review seven areas in which

current practices often lag behind statistical develop-

ments in other areas of ecology and evolution (summa-

rized in Table 1). I highlight that one problem is a barrier

between the users of phylogenetic methods and the

techniques themselves. I believe that one reason for this

is that previously users of phylogenetic methods have

had to rely on relatively inflexible proprietary software

packages. However, it is increasingly possible to conduct

phylogenetic analysis in flexible computing environ-

ments such as RR (R-Development-Core-Team, 2008; e.g.

reviewed in Paradis, 2006) which is beginning to break

such barriers down, and has been the medium for

implementing new tools for comparative analyses (see

Table 1).

Putting undue faith in models with low R 2

It has been pointed out that in many comparative

analyses the proportion of variance explained (R2) by

statistical models is often very low, frequently in the

range 0.05–0.10 (Moller & Jennions, 2002; Roslin, 2002;

Jennions & Moller, 2003). This low explanatory power is

in spite of overall model significance, or terms within

models being statistically significant. The explanation is

simply that in large datasets it is possible to detect very

small effects. As comparative datasets become larger it is

possible to pick up statistically significant effects of ever

weaker signals, yielding models with statistically signif-

icant terms yet low overall explanatory power.

According to one view of the world all variables

influence each other to some (often trivial) degree; thus

if we are examining the effects of a set of predictors on a

response variable the likelihood is that the effects will

show a tapering distribution of effect sizes (Burnham &

Anderson, 2002). Showing that the effect of one variable

is statistically significant is not terribly informative; what

is of more interest is the effect of that variable and how

that ranks relative to others (Hilborn & Mangel, 1997;

Nakagawa & Cuthill, 2007), as well as to examine how

well the sizes and relative sizes of observed effects relate

to what is expected from prior theory (Stephens et al.,

2005). Comparative analysis has been slow to recognize

this (but see Paradis, 2005 for a discussion of the issue),

and frequently relies on binary interpretations of

P-values without reference to the broader importance

of variables.

The R2 has rightly been criticized as a ‘goodness-of-fit’

measure. The goodness-of-fit measured by the R2 is

specifically the variance explained relative to the vari-

ance in the raw data. It does not directly compare the

relative fit of models, nor does it say anything about

whether the fitted model is the ‘best’ in some sense. This

is because a model with higher R2 may not be ‘better’

than a model with a lower value, amongst other things

because a model with more parameters will always have

a better fit than a nested model with fewer. More

generally there is no absolute criterion for determining

goodness-of-fit, only measures of relative fit or support:

thus we can only measure the fit of one model relative to

another. Although the R2 is not a general measure for

determining goodness-of-fit, in analysing the output of

models the R2 can be useful as an indicator of lack of fit;

as noted above models with poor R2 values should not be

over-interpreted. The reasons why a model yields a low

R2 are various. One reason is simply that there is a lot of
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random noise in the data, for example resulting from

measurement error. In this case, the low R2 should not

deter us from interpreting the model. However, in the

absence of other knowledge, when a low R2 is returned it

cannot be concluded with great certainty that other key

variables have not been omitted, and the low explana-

tory power may be a consequence of a failure to include

important predictors.

It is also worth noting that there are also circumstances

under which high R2 values can also be potentially

misleading. For example, when data are examined on a

logarithmic scale, if the scale encompasses several orders

Table 1 Seven deadly sins of comparative analysis.

Problem Consequence Solution Software

1 Putting undue faith

in models with

low R2

Models with low explanatory power may

be statistically significant. This is often

a consequence of large sample sizes

and in practice the effects of variables

included in models are weak

The importance of weak

predictors may be

over-emphasized; R2 is not

a reliable measure of fit or

relative fit

Use effect sizes as well as

significance tests. AIC is a better

measure for comparing model fit.

Low R2 is a diagnostic of lack of

model fit

MasterBayes;

gee function in

APEAPE; PGLMPGLM

function in

CAICRCAICR

2 Reporting both PI

and PC analysis

PI and PC make very different

assumptions about the distribution of

data, and are best regarded as

alternative models for the same data.

As such they should not be treated

equally

Models with alternative

assumptions are treated

equally; potentially conflicting

results may be reported

Check residuals and data for

phylogenetic dependence; use

a correction if appropriate

BayesTraits;

GEIGERGEIGER; PDAPPDAP;

CAICRCAICR

3 Not testing

distributional

assumptions

Phylogenetically corrected models

make assumptions about the

distribution of residuals that are the

same as those made in

nonphylogenetic analysis and are

well known

Parameter estimates may be

incorrect or biased. Reported

P-values may be incorrect

Use conventional regression

diagnostics – check for linearity,

normality of residuals and

homogeneity of variance (all

adjusted for phylogeny)

gee function

in APEAPE;

CAICCAIC ⁄ CAICRCAICR;

MasterBayes

4 Data dredging In analyses, comparing a large number

of predictors, best fit models are

selected by comparing a large number

of alternative models, or by using

significance tests on parameters to

distinguish models

High probability of type I errors;

degenerate sampling

distributions for parameters.

Selected model is often no

better than many possible

alternatives. Outcome is highly

sensitive to collinearity

Clearly identify hypotheses to be

tested and test those. Report all

stages in the model selection

process. Use the full model when

appropriate; when selection is

necessary use model averaging or

a multi-model approach

gee function in

APE; CAICR;APE; CAICR;

MasterBayes

5 Treating residuals

as data

Residuals from regressions of the

response on confounding variables are

used to control for unwanted effects in

multi-variable regressions

Results in biases, particularly

when the predictors are

collinear

Use multipredictor analyses rather

than univariate methods; do not

use residuals in model fitting

gee function in

APEAPE; CAICRCAICR;

MasterBayes

6 Ignoring alternative

models

Methods such as contrasts and GLS

assume that residuals are distributed

according to the predictions of a

Brownian model of trait evolution. This

may not be the cases and other

processes may be operating

The phylogenetic correction

may not be fully effective. The

effects of important processes

such as stablizing selection,

varying rates of evolution or

other factors shaping trait

variation may be missed

Consider alternative models, such

as OU model, d, k or j

transformations of Pagel (1997,

1999), or models incorporating

rate variations

BayesTraits,

GEIGERGEIGER,

LASERLASER, APEAPE,

OUCHOUCH

7 Ignoring quality

control of data

Data from disparate sources vary in

quality and may be erroneous. Data

may be missing for significant numbers

of species

Low quality data will

compromise statistical power.

Missing data can lead to

biases in the outcome of

analyses

Employ quality criteria for data

inclusion. Analyse data to

determine whether data are

missing randomly with respect to

other variables. Consider

imputation methods

MasterBayes

Current URLs for the software mentioned are given below.

APEAPE: http://cran.r-project.org/web/packages/ape/

MasterBayes: http://cran.r-project.org/web/packages/MasterBayes/index.html

CAICCAIC: http://www.bio.ic.ac.uk/Evolve/software/caic/index.html

CAICRCAICR: http://r-forge.r-project.org/R/?group_id=140

LASERLASER: http://cran.r-project.org/web/packages/laser/index.html

GEIGERGEIGER: http://cran.r-project.org/web/packages/geiger/index.html

PDAPPDAP: http://mesquiteproject.org/pdap_mesquite/index.html

OUCHOUCH: http://tsuga.biology.lsa.umich.edu/ouch/
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of magnitude, a high R2 may be estimated even though

there is considerable variance in the underlying untrans-

formed data (Smith, 1980; Nee et al., 2005). Nee et al.

(2005) argue that this can lead to misleading interpre-

tations of quantities such as life-history invariants.

Although we like to be reassured that our models

provide as good a fit as possible to the data, and methods

for testing and rejecting models do exist (e.g. Freckleton

& Harvey, 2006; Rabosky, 2006), and we should be

careful to not over-interpret models that have a high lack

of fit, in many ways the focus on explanatory power is

misleading: the question should be how the effect of

variables of interest compares with other factors, and

how this tallies with the predictions of theory. Thus, if

hypotheses and alternative hypotheses are framed care-

fully, by comparing the fit of different models it should be

possible to distinguish these and, using methods such as

information theoretic or Bayesian methods, to quantify

the relative weight of evidence in favour of each model

(Hilborn & Mangel, 1997; Burnham & Anderson, 2002;

Stephens et al., 2005; Link & Barker, 2006). By using

metrics such as effect sizes or relative weight of evidence

of different models, it is possible to test hypotheses

without using the R2 for a purpose for which it is

unsuited.

Reporting both PI and PC analyses

Frequently, both across-species and phylogenetically

corrected analyses of the same data are reported simul-

taneously. This is despite the fact that the two forms of

analysis make very different assumptions about the

distribution of the data. Because of this, if one of

the analyses is valid in terms of the data and meets the

assumptions of the analysis, the other will not be. A

number of methods exist for diagnosing and controlling

for phylogenetic nonindependence (Lynch, 1991; Pagel,

1999; Freckleton et al., 2002; Blomberg et al., 2003;

Housworth et al., 2004). In the specific case of distin-

guishing between phylogenetic analysis using contrasts

or GLS and simple across-species analysis, this is readily

done by comparing likelihoods of the alternative models

(Pagel, 1999; Freckleton et al., 2002).

Three arguments may be used to justify the use of both

types of analysis on the same data. First, it is argued that

across-species analysis reveals different factors, such as

ecological ones, compared with phylogenetic analysis

which reveals historical ones. However, this argument is

generally not accepted, following heated debate (Harvey

et al., 1995a,b; Westoby et al., 1995). In purely statistical

terms, it is clear that across-species analyses should at

least be regarded with suspicion if data show evidence of

nonindependence in any case (Martins & Garland, 1991).

The second argument is that in some models of trait

evolution, across-species analysis performs better statis-

tically, even if data show strong phylogenetic depen-

dence (Price, 1997; Harvey & Rambaut, 2000; Freckleton

& Harvey, 2006). However, these models are rather

specialized models referring to ecological traits in closely

related species occupying a confined niche space in an

adaptive radiation. They do not apply if species are not

connected ecologically, and for instance would not apply

to many of the very broad datasets frequently analysed

that encompass large numbers of species across biogeo-

graphically widely separated areas. Moreover, the diag-

nostics now exist with which to detect such processes, if

they are suspected (Harmon et al., 2003; Freckleton &

Harvey, 2006).

A third argument is that presenting both an across-

species and a phylogenetically corrected analysis is a

‘belt-and-braces’ approach to analysis. This would be

particularly the case if both analyses yield comparable

results, for example in indicating whether the effect of a

particular predictor in a linear model were significant or

not. It may not seem to matter a great deal in such a case

if both analyses are reported, and a reader may be

comforted that the result obtained is robust to making

contrasting assumptions about the structure of the data.

The problem arises, of course, when the two analyses do

not agree and there is a difference between them. In this

case, the only course of action is to use an index of

phylogenetic dependence to try to distinguish the mod-

els. For example the k statistic of Pagel (1997, 1999) is a

straightforward way to do this. This index varies between

0 (phylogenetic independence) and 1 (traits covary as

assumed by the Brownian model). In a linear modelling

context this parameter allows varying levels of phylo-

genetic dependence in the model residuals to be mod-

elled, and is readily estimated via maximum likelihood

(Freckleton et al., 2002). The maximum likelihood value

might be zero (nonphylogenetic analysis should be

preferred), 1 (Brownian model preferred) or an interme-

diate value reflecting a more complex pattern of trait

distribution. Using several freely available RR-packages,

this parameter can be estimated ‘in the background’ with

minimum additional effort.

The problem of presenting both across-species and

phylogenetic analyses can be made clearer by analogy

with the problem of whether to transform data or not in a

conventional parametric analysis: one is often faced with

the problem of whether to do this or not, but it would not

usually be the case that one would present in a

publication the results of analyses of the same response

variable both with and without transformation. Instead

one would use a combination of diagnostics and maxi-

mum likelihood (e.g. Box–Cox transformation) to decide

which analysis is better justified. It would seem sensible

to apply the sample type of quantitative criteria to decide

between phylogenetic and nonphylogenetic models.

Not testing distributional assumptions

It is well appreciated that in conventional statistical

analysis specific assumptions about the distribution of
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data are made and should be tested (e.g. Grafen & Hails,

2004). Apart from the issue of independence, these

include the shape of residual distributions, linearity (in

linear models) and homogeneity of variance (or more

generally, that the residual variation is distributed as it

should be as the predictors change). Such assumptions

should also hold in phylogenetic comparative analyses,

otherwise results of statistical tests may be invalid.

In analyses using PICs or GLS, this is very readily done

and those developing methods have often been clear on

how to do this (e.g. see http://www.bio.ic.ac.uk/Evolve/

software/caic/assumptions.html), although this does not

seem to be widely appreciated. In a PIC analysis (assum-

ing that the data have not been regressed through the

origin) residuals from fitted models can be interpreted

and tested under the same assumptions as any other

model (Garland et al., 1992). In a GLS analysis, Garland &

Ives (2000) present a simple and elegant calculation for

generating normalized residuals from a GLS model.

Specifically, these residuals have the expected property

of being normally, independently distributed with con-

stant variance and zero mean. These residuals can be

analysed using the conventional diagnostics used in

nonphylogenetic linear models.

Data dredging

One of the biggest criticisms of the comparative approach

is that because data are not generated experimentally,

the relationships found are only correlative and may not

stand up to further examination. The possibility of

hidden variables or type I error, for example, mean that

significant correlations may be mistakenly taken as

implying a causal relationship when in fact no such

relationship exists. Moreover, if a large number of

potential explanatory variables are used these problems

may be exacerbated, and subjectivity may enter into the

decision as to which results to present and which

subsequent tests to perform. The net result of this is the

phenomenon of ‘data dredging’, whereby statistical tests

are presented as if they are conducted independently and

objectively whereas in reality they are not. The danger

here is particularly that the importance of some predic-

tors is overstated: so unimportant variables may be

reported as ‘significant’, when they are not, or the effects

of weak predictors are over estimated. This problem is a

well-known phenomenon (Burnham & Anderson,

2002).

There are three solutions to these problems. First,

authors need to be explicit about which variables have

been analysed, which hypotheses were anticipated to be

tested a priori, and how the tests reported are chosen

(and which were not) (Burnham & Anderson, 2002;

Stephens et al., 2005). Second, techniques such as model

averaging should be considered and formulated appro-

priately (Burnham & Anderson, 2002; Link & Barker,

2006). Model averaging is a particularly attractive

approach as it involves fitting all models that are

biologically plausible, assigning to each model a weight

that depends on its relative fit, then basing inference on

this set of weights. There is no need for selection and

inclusion or exclusion of models using this approach.

Third, when large amounts of data have been collected

with few a priori expectations of how different variables

will relate to each other, statistical testing may not be

appropriate and alternative techniques such as data

mining should be considered (see Kantarszic, 2002 for

an overview of techniques).

In essence, the problem is that too frequently the

exploratory analyses that precede the analysis presented

are not reported or considered as being part of the overall

analysis (Stephens et al. 2005). When considering large

complex datasets, it is essential that all steps in the

analysis process are considered and that the conse-

quences of decisions made in the exploratory phase are

understood as there is evidence that this can lead to

biased reporting of results in the literature (Ridley et al.,

2007).

Treating residuals as data

One of the most common problems in comparative

analyses is the use of residuals as data. This arises

particularly when researchers wish to control for one

variable, particularly body mass, whilst analysing the

relationship between other variables. The approach

commonly used is to regress the trait of interest on body

mass, take the residuals from this regression and use

these as data in the subsequent analysis. Despite warn-

ings from the literature (e.g. Garcia-Berthou, 2001;

Freckleton, 2002), this approach nevertheless continues

to be used in numerous studies.

The problem with doing this is that if the variable

controlled for covaries with other variables in the

analysis, then subsequent analyses will be biased (Freckl-

eton, 2002). The obvious, and straightforward, way to

deal with this is to use a multiple regression ⁄ linear model

in which the confounding variable is used to control for

unwanted effects. Subsequently, if required, alternative

decomposition of variance can be used to eliminate

variables in different orders. For example, if we have two

predictors, then the model sequential sums of squares

can be examined to see whether the variance explained

by predictor 1 is dependent or not of predictor 2 in the

model, and to decide whether the ordering of the

variables is important. Detailed examples of this process,

and consequences for interpretation, are given by Grafen

& Hails (2004).

One argument frequently used in favour of using

residuals to control effects is that this decomposition may

better reflect the order in which causal variables act. This

is not correct, however. To illustrate this, consider a

response variable y which is generated as a function of x1

and x2. The variables act sequentially, such that y is
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generated in the following way. First x1 acts, generating a

first prediction:

y1 ¼ a1 þ b1x1 þ e ð1Þ
In eqn 1 e is the variance unexplained by x1, i.e. the

residual term. This is then acted upon by x2, i.e.

e = b2x2 + e’, such that the effects of b1and b2 are

sequential and independent. The net model then

becomes:

y1 ¼ a1 þ b1x1 þ b2x2 þ e0 ð2Þ
It is straightforward to see that the order of x1 and x2 in

this model is irrelevant, and that eqn 2 would be the

same irrespective of whether x1 acts before x2 or vice

versa. Consequently, there is no argument for using

residual regression to estimate the effects of x2 and x1

separately.

Ignoring alternative models

In analysing comparative data, the bulk of studies have

used the method of contrasts to look for simple correla-

tions between pairs of variables. For example, the most

commonly employed software for conducting compara-

tive analysis by contrasts (CAIC; Purvis & Rambaut,

1995) has been used in over 700 studies at the time of

writing (source: Thomson ISI). There are two issues with

this reliance on one technique, however. First, the

method assumes a specific evolutionary model for the

data; and second, this is often the simplest of a suite of

more complex statistical models.

Increasingly more sophisticated evolutionary models

are being used to analyse comparative data (Hansen,

1997; Pagel, 1997, 1999; Garland et al., 1999; Thomas

et al., 2006; Ives et al., 2007; Felsenstein, 2008; Hansen

et al., 2008; reviewed by Freckleton & Pagel, 2009; Revell

& Collar, 2009). These models can incorporate a range of

processes, such as punctuational and speciational evolu-

tion, accelerating and decelerating rates of evolution and

adaptive variation. These models allow data to be

explored and more sophisticated interpretations of data

to be developed than to simply ask whether traits are

correlated or not, as is frequently done.

A second way in which it is possible to develop more

sophisticated analyses is via the use of more flexible

statistical models. The method of contrasts is identical

to the method of GLS (Pagel, 1997, 1999; Garland

et al., 1999; Freckleton & Jetz, 2009). However, by

expressing statistical problems in the form of linear

models it is possible to generate less restrictive models

that more realistically reflect the structure of the data.

For instance software that performs GLS analysis will

typically allow a model to be written as a compact

formula, combining both continuous and categorical

predictors. The same analysis using independent con-

trasts would require dummy coding of some variables

(e.g. for multi-level factors and interaction terms)

making the process of model fitting more laborious

and less transparent.

Ignoring quality control of data

Comparative analysis frequently relies on data that have

been collated from various sources across a number of

different trait variables and using the phylogenetic

information at hand. Although many authors take great

trouble in describing the process of data collation, this is

not always done. There are also issues in data quality that

are not always dealt with and here I wish to discuss three,

the quality of the trait data, missing data and robustness

of the phylogenetic data.

In a review of databases on primate body size data,

Smith & Jungers (1997) pointed out that many of the

data used in comparative analyses are collected in a

somewhat haphazard manner. They revisited several

existing published databases and found that the reporting

of the process of how the data were collected was patchy

to the point where it was not clear where data had come

from. For example during the evolution of one dataset in

successive publications, the meaning of data had become

distorted with initially species means substituting for

genus means, then back again in subsequent papers with

the consequence that species were in the final version

assigned ‘mean’ values even though they had never been

measured; or in some cases there is insufficient checking

of data, for example they cite the example of human

body mass, which in one database was represented by a

value appropriate for pygmies.

In terms of data quality one important issue is that

often in comparative analyses, it is necessary to use

constructed variables that are indices or scores. This is

inevitable as for many important variables it is impossible

to obtain data from the literature that have been

measured in the same way in all studies. In such cases,

it is important to ensure that the index or score

constructed is meaningful and robust to alternative

formulations (e.g. see Olson et al., 2008 for an example).

A major problem with data quality is that it is rarely

the case that data are available for all species within a

clade. Usually data are missing for a proportion of species,

often from just one or two variables per species. This

generates several problems. The usual way to deal with

missing data is via case-wise deletion. Thus, all cases

containing missing entries are simply removed from the

dataset prior to analysis. For model selection or compar-

ison the set of included cases should be the same for all

models considered, so included cases has to be based on

the set of complete variables for the maximal model. This

can either lead to the loss of quite considerable propor-

tions of cases, reducing sample sizes, or restrict the set of

predictors that can be included in the analysis. In either

case the resultant analysis can be compromised.

Case-wise deletion is only a valid course of action

under certain conditions. This is the case only when data
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are missing completely at random, which is when the

probability of a value being absent is not related to any

other variable in the analysis, or indeed to phylogenetic

position. The problems of missing data in evolutionary

biology have been reviewed recently by Nakagawa &

Freckleton (2008). In essence the problem is that if data

are not missing completely at random, but are missing

nonrandomly with respect to one or more of the other

variables being considered, then there is a strong possi-

bility that results will be biased. It is easy to see why this

may be the case in a comparative analysis. For example,

if species are more likely to have missing data on life-

history variables because they are small or because they

are rare, the sample of included species will be biased

with respect to these variables.

If the phylogeny is available for the whole clade then it

should be relatively straightforward to test whether

missingness is a function of any other variable. Missing-

ness can be coded as a binary variable, then tested for

phylogenetic position or correlated with other variables.

Any significant correlate of missingness should be taken

seriously and subsequent results interpreted with cau-

tion. Techniques exist for imputing missing values and

dealing with some forms of missing data (see Nakagawa

& Freckleton, 2008). Fisher et al. (2003), for example,

used this approach in a phylogenetic comparative anal-

ysis to deal with missing data.

Extinction of species during the course of evolution

can generate problems akin to those of missing data. If

extinction is higher for species with given traits then the

results of analyses can be affected (Maddison, 2006;

Freckleton et al., 2008). The difference here is that

extinct species are usually not included within the

working phylogeny and hence this effect is difficult to

test for. However, approaches are beginning to be

developed (e.g. Bokma, 2008; Paradis, 2008), although

it is too early to judge how successful these are,

or whether biased extinction generates widespread

problems for comparative analyses.

The final issue with data quality concerns the robust-

ness of the phylogeny. Commonly the limiting factor in

conducting comparative analyses has been the availabi-

lity of phylogenetic information (Harvey et al., 1995b). In

many cases, a phylogeny is not available and hence a

taxonomy has been substituted, which is used to gener-

ate a branching tree for the group examined. Sometimes

more than one tree is available, or alternative resolutions

exist for trees in which there is great uncertainty at some

of the nodes. The first point to make is that, whatever the

quality of the phylogeny, a test for phylogenetic depen-

dence can be used to determine whether the phylogeny

improves the quality of the statistical model. Thus, even a

rough tree based on a taxonomy should be preferred over

a nonphylogenetic model if diagnostics indicate that the

resultant model is preferable. Second, as suggested by

Pagel (1993), the uncertainty in the phylogenetic model

can potentially be reduced by using an estimated GLS

approach (EGLS), whereby areas of phylogenetic uncer-

tainty are removed by resolving the phylogeny matrix on

a variable known to contain high levels of phylogenetic

information. For example, if we have a polytomy

connecting a set of species, and we have body size

information for those, body size is known to contain

strong phylogenetic signal and could be used to generate

a resolution (Pagel, 1993). Finally, increasingly it is

possible to quantify the uncertainty in phylogenetic

reconstructions and to directly incorporate this into

comparative tests using Bayesian methods (e.g. Huelsen-

beck, 2000).

Concluding remarks

The aim of this paper was to highlight some areas where

comparative analyses are currently lagging behind sta-

tistical practice in other areas of ecology and evolutionary

biology. This may be partly because methods for analy-

sing comparative data have been formulated in a differ-

ent way and authors are unclear on the assumptions. A

critical limitation in the past is that researchers have had

to rely on relatively inflexible bespoke packages for

applying individual tests. With the increasing availability

of software for RR via contributed packages (e.g. Paradis

et al., 2004), together with detailed instructional texts

(Paradis, 2006), data can be analysed in a more interac-

tive environment, and using techniques in ways that are

more akin to those used in conventional analyses, This

offers a great deal of hope for those conducting compar-

ative analyses and should see these techniques evolve

and become more sophisticated in the near future.
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